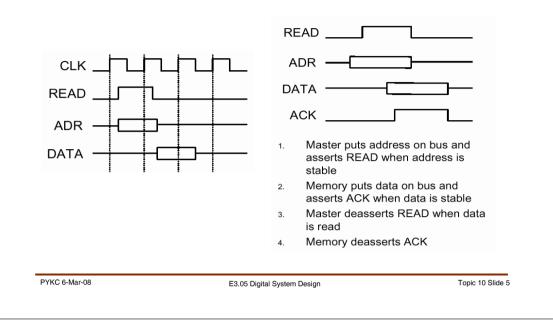

We will consider a number of issues related to bus architectures in digital systems. **Topic 10** Useful references: "Bus Architecture of a System on a Chip with User-Configurable System **Bus Architecture &** Logic", Steven Winegarden, IEEE JOURNAL OF SOLID-STATE CIRCUITS, Interconnects VOL. 35, NO. 3, MARCH 2000, p425-433. "AMBA: ENABLING REUSABLE ON-CHIP DESIGNS". David Flvnn, IEEE Micro, July/August 1997. AMBA[™] Specification (Rev 2.0), ARM Ltd., 1999 Peter Cheung The CoreConnect Bus Architecture. IBM. Department of Electrical & Electronic Engineering Imperial College London • VSI Alliance Architecture Document, version 1.0, 1997. • Draft Chapter, "System-on-Chip", Flynn & Luk URL: www.ee.imperial.ac.uk/pcheung/ E-mail: p.cheung@imperial.ac.uk PYKC 6-Mar-08 Topic 10 Slide 1 PYKC 6-Mar-08 Topic 10 Slide 2 E3.05 Digital System Design E3.05 Digital System Design

Basic concepts: Bus basics: order and broadcast properties

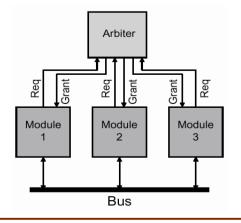
• Communications on buses must be in strict order: serial nature of bus

• It can broadcast a transaction - sending to multiple components simultaneously

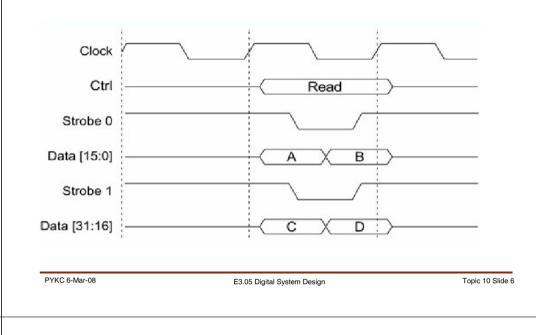

Basic concepts: Cycles, messages and transactions

Introductions & Sources

- Buses operate in units of cycles, Messages and transactions.
 - *Cycles*: A message requires a number of clock cycles to be sent from sender to receiver over the bus.
 - *Messag*e: These are logical unit of information. For example, a write message contains an address, control signals and the write data.
 - *Transactio*n: A transaction consists of a sequence of messages which together form a transaction. For example, a memory read requires a memory read message and a reply with the requested data.


Topic 10 Slide 3

Synchronous vs Asynchronous



Basic concepts: Bus arbitration

- Only one bus master can control the us.
- Need some way of deciding who is master may use a bus arbiter:

Basic concepts: Typical Source Synchronous Data Transfer

Basic concepts: Bus pipelining

- A transaction may take multiple cycles
- Overlap multiple transaction through pipelining:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Read	AR	ARB	AG	RQ	Р	RPLY									
2. Write		AR	ARB	AG	Stall	Stall	RQ	ACK							
3. Write			AR	ARB	Stall	Stall	AG	Stall	RQ	ACK					
4. Read				AR	Stall	Stall	ARB	Stall	AG	Stall	RQ	Ρ	RPLY	RQ	
5. Read							AR	Stall	ARB	Stall	AG	RQ	Р	RPLY	
6. Read									AR	Stall	ARB	AG	Stall	Stall	RQ
Due hurre															
Bus busy															

Topic 10 Slide 7

PYKC 6-Mar-08

Basic concepts: Split-transaction bus

- A bus transaction can be divided into two or more phases, e.g.
 - "Request" phase

1. Read • "Reply" phase AR ARB AG RQ 2. Write AR ARB AG RQ • These can be split into two separate sub-transactions, which may or may 3. Write not happen consecutively. If split, these must compete for the bus by AR ARB AG RQ 4. Read arbitration. AR ARB AG RPLY 1. Reply 5. Read AR ARB Stall Stall Stall Stall AG RQ ARB AG RPL AR 2. Reply 6. Read AR ARB Stall Stall Stall Stall AG RQ ARB AG RPLY AR 3. Reply ARB 4. Reply AR AG RPLY AR 5. Reply ARB AG AR 6. Reply ARB Bus busy PYKC 6-Mar-08 Topic 10 Slide 9 PYKC 6-Mar-08 Topic 10 Slide 10 E3.05 Digital System Design E3.05 Digital System Design **Basic concepts: Basic concepts:** Pipelined only bus vs split-transaction bus **Burst transfer mode Pipelined Bus** ARB ARB ARB ARB Adr Data Adr Data Adr Data Cmd Adr Data Cmd Cmd Cmd 2 3 12 13 5 10 11 14 Δ 9 Request RQ A RP A 1. Trans ARB RP B 2. Trans RQ B Cmd Adr Data Data Data Data RP C RQ C 3. Trans Burst Request Split-Transaction Bus 1. Trans RQ A RP A Gnt A Gnt B Res A Arbitration RQ B RP B 2. Trans Adr Data Data Data Data Data Data Data Cmd Adr Data Message A Cmd Adr Data Message B RQ C RP C 3. Trans PYKC 6-Mar-08 PYKC 6-Mar-08 Topic 10 Slide 11 E3.05 Digital System Design

Basic concepts:

Split-transaction bus

8

9

10 11 12

13

14

15

6

2

ARB

3

AG

4

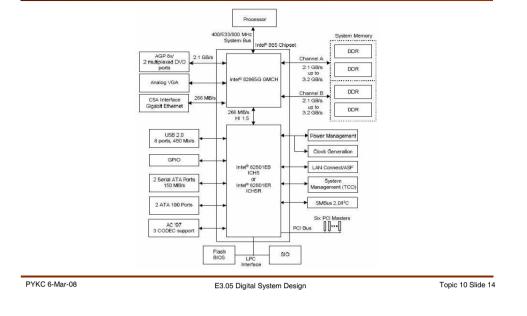
RQ

5

1

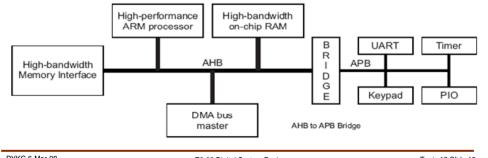
AR

Bus hierarchy


Bus bandwidth

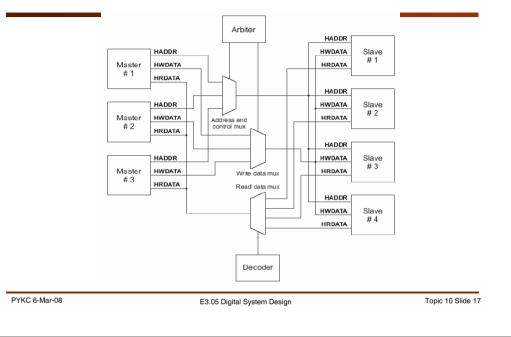
Bus	Width (bits)	Bus Speed (MHz)	Bus Bandwidth (MBytes/sec)		
8-bit ISA	8	8.3	7.9		
16-bit ISA	16	8.3	15.9		
EISA	32	8.3	31.8		
VLB	32	33	127.2		
PCI	32	33	127.2		
64-bit PCI 2.1	64	66	508.6		
AGP	32	66	254.3		
AGP (x2 mode)	32	66x2	508.6		
AGP (x4 mode)	32	66x4	1,017.3		

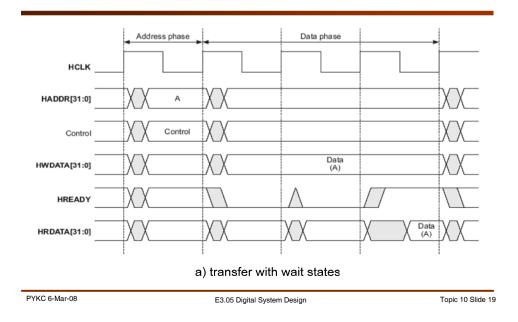
PYKC 6-Mar-08


E3.05 Digital System Design

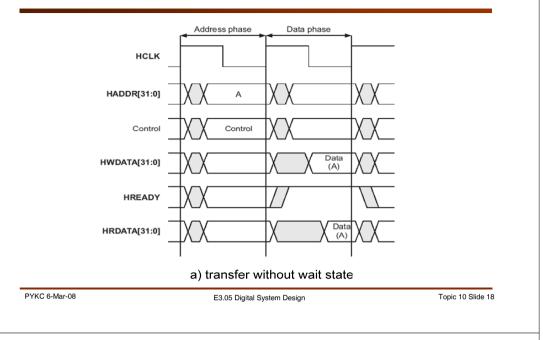
Topic 10 Slide 13

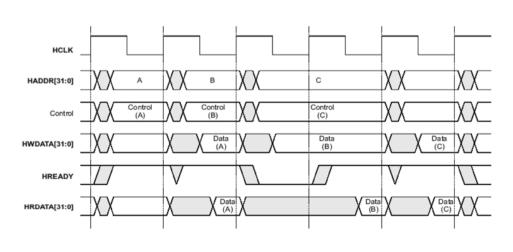
AMBA bus


- Based around ARM processor
 - AHB Advanced High-Performance Bus
 - > Pipelining of Address / Data
 - > Split Transactions
 - ► Multiple Masters
 - APB Advanced Peripheral Bus
 - ► Low Power / Bandwidth Peripheral Bus

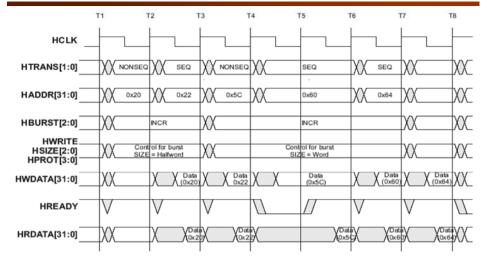

AMBA Bus Design Goals

- Encourages modular design and design reuse
- Well defined interface protocol, clocking and reset
- Low-power support (helped by two-level partitioning)
- On-chip test access built-in structure for testing modules connected on the bus
- Transactions on AHB
 - Bus master obtain access to the bus
 - Bus master initiates transfer
 - Bus slave provides response


AMBA bus arbitration


AHB Transfer with wait states

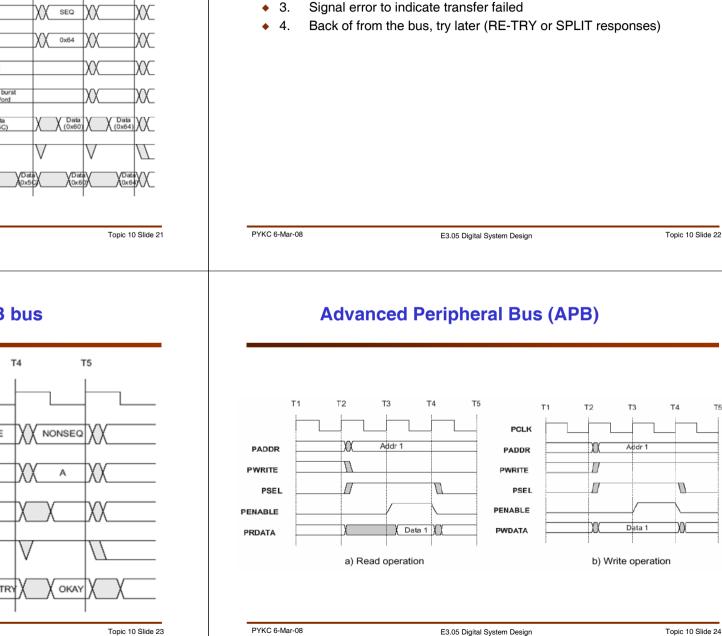
Simple AHB Transfer



Multiple transfers with Pipelining

PYKC 6-Mar-08

Burst mode transfer (undefined length)

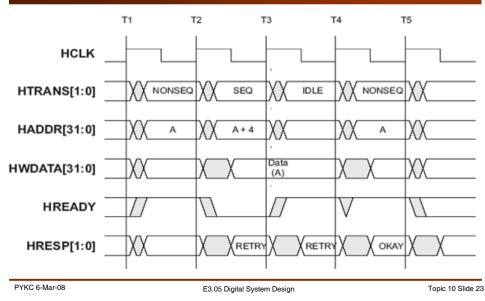


E3.05 Digital System Design

Slave Transfer Responses

Complete transfer immediately (single cycle transfer)

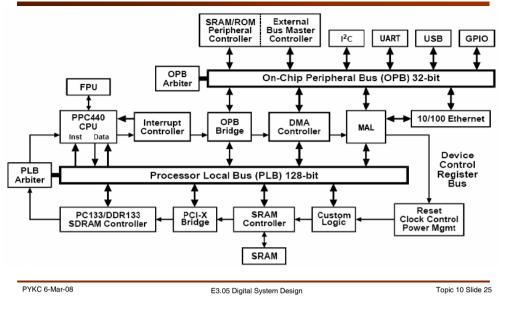
Insert one or more wait states to allow completion



♦ 1.

2.

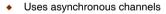
Retry Responses on the AHB bus


PYKC 6-Mar-08

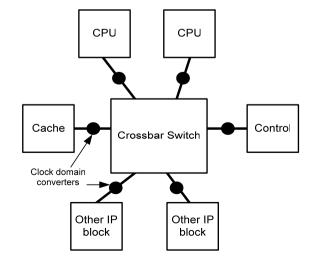
 \Box

T5

IBM CoreConnect Bus

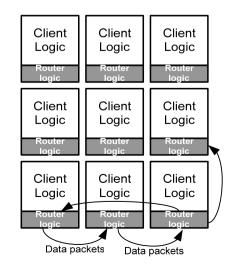


CoreConnect vs AMBA


	IBM CoreConnect Processor Local Bus	ARM AMBA 2.0 AMBA High-performance Bus		
Bus Architecture	32-, 64-, and 128-bits Extendable to 256-bits	32-, 64-, and 128-bits		
Data Buses	Separate Read and Write	Separate Read and Write		
Key Capabilities	Multiple Bus Masters 4 Deep Read Pipelining 2 Deep Write Pipelining Split Transactions Burst Transfers Line Transfers	Multiple Bus Masters Pipelining Split Transactions Burst Transfers Line Transfers		
	On-Chip Peripheral Bus	AMBA Advanced Peripheral Bus		
Masters Supported	Supports Multiple Masters	Single Master: The APB Bridge		
Bridge Function	Master on PLB or OPB	APB Master Only		
Data Buses	Separate Read and Write	Separate or 3-state		

E3.05 Digital System Design	Topic 10 Slide 25	PYKC 6-Mar-08	E3.05 Digital System Design	Topic 10 Slide 26

Crossbar Switch Approach



- Different modules can run at different clock frequency
- Globally Asychronous, Locally Synchronous (GALS) system

Network-on-chip approach

- Array of tiles
- Each tile contains client logic and router logic
- 2-D mesh topology
- Uses data packets, not wires, for communication
- Predictable delay, and noise

PYKC 6-Mar-08

Topic 10 Slide 27

PYKC 6-Mar-08